Vectors

A vector may be considered as a set of instructions for moving from one point to another.

A line which has both magnitude and direction can represent this vector.

The vector \boldsymbol{u} can be represented in magnitude and direction by the directed line segment \overrightarrow{AB} .

The length of \overrightarrow{AB} is proportional to the magnitude of u and the arrow shows the direction of u.

AB and CD both represent the same vector \mathbf{u}

A vector does not have a position – only magnitude and direction, so many different directed line segments may represent this vector.

We say <u>directed line segment</u> because AB indicates movement <u>from</u> A <u>to</u> B whereas BA would indicate movement <u>from</u> B <u>to</u> A

Components of a Vector in 2 dimensions:

To get from A to B you would move:

- 2 units in the x direction (x-component)
- 4 units in the y direction (y-component)

The components of the vector are these moves in the form of a column vector.

thus

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \text{ or } \mathbf{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

A 2-dimensional column vector is of the form

tor is of the form $\begin{pmatrix} x \\ y \end{pmatrix}$

Similarly:
$$\overrightarrow{CD} = \begin{pmatrix} -3\\2 \end{pmatrix}$$
 or $\mathbf{v} = \begin{pmatrix} -3\\2 \end{pmatrix}$

Magnitude of a Vector in 2 dimensions:

We write the magnitude of \boldsymbol{u} as $|\boldsymbol{u}|$

$$\mathbf{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 then $|\mathbf{u}| = \sqrt{x^2 + y^2}$

The magnitude of a vector is the length of the directed line segment which represents it.

Use Pythagoras' Theorem to calculate the length of the vector.

The magnitude of vector \mathbf{u} is $|\mathbf{u}|$ (the length of PQ)

The length of PQ is written as $|\overrightarrow{PQ}|$

$$\overrightarrow{PQ} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
 then $\left| \overrightarrow{PQ} \right|^2 = 8^2 + 4^2$

and so
$$|\overrightarrow{PQ}| = \sqrt{8^2 + 4^2} = \sqrt{80} = 8.9$$

Examples:

- 1. Draw a directed line segment representing $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$
- 2. $\overrightarrow{PQ} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and P is (2, 1), find co-ordinates of Q
- 3. P is (1, 3) and Q is (4, 1) find \overrightarrow{PQ}

Solutions:

2. Q is $(2+4, 1+3) \rightarrow Q(6, 4)$

3. $\overrightarrow{PQ} = \begin{pmatrix} 4-1 \\ 1-3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

Vector:

A quantity which has magnitude and direction.

Scalar

A quantity which has magnitude only.

Examples:

Displacement, force, velocity, acceleration.

Examples:

Temperature, work, width, height, length, time of day.

Vectors

Vectors in 3 dimensions:

3 dimensional vectors can be represented on a set of 3 axes at right angles to each other (orthogonal), as shown in the diagram.

Note that the z axis is the vertical axis.

To get from A to B you would move:

- 4 units in the x-direction, (x-component)
- 3 units in the y-direction, (y-component)
- 2 units in the z-direction. (z-component)

In component form: $\overrightarrow{AB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$

In general:
$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$
,

Magnitude of a 3 dimensional vector

$$|\mathbf{u}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

This is the length of the vector.

Use Pythagoras' Theorem in 3 dimensions.

$$AB^{2} = AR^{2} + BR^{2}$$

$$= (AP^{2} + PR^{2}) + BR^{2}$$

$$= (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2} + (z_{B} - z_{A})^{2}$$

and if
$$u = \overrightarrow{AB}$$

then the magnitude of u, |u| = length of AB

This is known as the

Distance formula for 3 dimensions

Recall that since: $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$, then

if $\mathbf{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ then $|\mathbf{u}| = \sqrt{x^2 + y^2 + z^2}$

Since $x = x_B - x_A$ and $y = y_B - y_A$ and $z = z_B - z_A$

Example:

1. If A is
$$(1, 3, 2)$$
 and B is $(5, 6, 4)$
Find $|\overrightarrow{AB}|$

2. If
$$\mathbf{u} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}$$
 Find $|\mathbf{u}|$

$$|\overrightarrow{AB}| = \sqrt{(5-1)^2 + (6-3)^2 + (4-2)^2} = \sqrt{4^2 + 3^2 + 2^2} = \sqrt{29}$$

$$|\mathbf{u}| = \sqrt{(3)^2 + (-2)^2 + (2)^2} = \sqrt{9 + 4 + 4} = \sqrt{17}$$

Unit 3 - 1 Vectors

The components of a vector are **unique**.

i.e. a vector has only one set of components

So if two vectors are equal, then their components are equal.

e.g. if
$$\begin{pmatrix} 2x \\ y+3 \\ z-1 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 2 \end{pmatrix}$$
 then $x = 3$, $y = 5$ and $z = 3$

Addition and subtraction of vectors

Vectors are added 'nose to tail'

This is known as the Triangle Rule.

To calculate a + b we add the components

To calculate a - b we subtract the components

The Zero Vector is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

To obtain the negative of a vector – multiply all its components by -1

$$\boldsymbol{a} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix} \quad \boldsymbol{a} + \boldsymbol{b} = \begin{pmatrix} 3+6 \\ 2+1 \\ 5+0 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \\ 5 \end{pmatrix}$$

$$\boldsymbol{a} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix} \quad \boldsymbol{a} - \boldsymbol{b} = \begin{pmatrix} 3 - 6 \\ 2 - 1 \\ 5 - 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 5 \end{pmatrix}$$

$$\mathbf{p} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} \quad \text{then} \quad \mathbf{p} = \begin{pmatrix} -3 \\ 2 \\ -7 \end{pmatrix}$$

Multiplying by a scalar

A vector can be multiplied by a number (scalar).

e.g. multiply a by 3 - written 3 a Vector 3a has three times the length but is in the same direction as a

In component form, each component will be multiplied by 3.

We can also take a common factor out of a vector in component form.

Scalar Multiples

If a vector is a scalar multiple of another vector, then the two vectors are parallel, and differ only in magnitude.

This is a useful test to see if lines are parallel.

$$a = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 then $3a = \begin{pmatrix} 6 \\ 3 \\ -9 \end{pmatrix}$

$$\mathbf{v} = \begin{pmatrix} 12\\16\\-4 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v} = 4 \begin{pmatrix} 3\\4\\-1 \end{pmatrix}$$

$$\boldsymbol{u} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} -6 \\ 3 \\ -9 \end{pmatrix}$ then $\boldsymbol{v} = -3 \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

v is a scalar multiple of u and so v is parallel to u.

$$\mathbf{p} = \begin{pmatrix} 8 \\ -4 \\ -12 \end{pmatrix} \text{ and } \mathbf{q} = \begin{pmatrix} -6 \\ 3 \\ 9 \end{pmatrix} \text{ then } \mathbf{p} = 4 \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} \text{ and } \mathbf{q} = -3 \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$$

p and q are scalar multiples of another vector and so again are parallel

Vectors

Position Vectors

If P has co-ordinates P(x, y, z) then

vector \overrightarrow{OP} has components $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

 \overrightarrow{OP} is called the position vector of P and is written as \mathbf{p}

A useful result

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$
 thus $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = b - a$

Any directed line segment may be written in terms of the position vectors of its end points.

e.g.
$$\overrightarrow{PQ} = q - p$$
 (note the order)

The component form of a position vector corresponds to the co-ordinates of the point.

$$P(x, y, z) \Rightarrow \mathbf{p} \text{ is } \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Collinear Points

Points are collinear if one straight line passes through all the points.

For three points A, B, C - if the line AB is parallel to BC, since B is common to both lines, A, B and C are collinear.

Test for collinearity

- 1. Show line segments are parallel (ie. scalar multiples)
- 2. Ensure there is a **COMMON** point and state it.

Example: A is (0, 1, 2), B is (1, 3, -1) and C is (3, 7, -7) Show that A, B and C are collinear.

$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}$ and $\overrightarrow{BC} = 2 \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = 2\overrightarrow{AB}$

 \overrightarrow{AB} and \overrightarrow{BC} are scalar multiples, so AB is parallel to BC. Since B is a **common** point, then A, B and C are collinear

Position vector m of mid-point of AB

M is the mid point of AB

a, **m** and **b** are the position vectors of A, M and B

$$\overrightarrow{AM} = \overrightarrow{MB}$$
 so

$$m - a = b - m$$

$$2m = b + a$$

hence $m = \frac{1}{2}(b+a)$

Vectors

Points, Ratios and Lines

Find the ratio in which a point divides a line.

Example:

The points A(2, -3, 4), B(8, 3, 1) and C(12, 7, -1) form a straight line.

Find the ratio in which B divides AC.

Solution: B divides AC in ratio of 3:2

$\overline{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 8-2 \\ 3-(-3) \\ 1-4 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix}$ $\overline{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 12-8 \\ 7-3 \\ -1-1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$ $\overline{AB} = 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{ and } \overline{BC} = 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \text{ So, } \frac{\overline{AB}}{BC} = \frac{3}{2} \text{ or } AB : BC = 3 : 2$

Points dividing lines in given ratios.

Example:

P divides AB in the ratio 4:3. If A is (2, 1, -3) and B is (16, 15, 11), find the co-ordinates of P.

Solution: P is P(10, 9, 5)

Points dividing lines in given ratios externally.

Example:

Q divides MN externally in the ratio of 3:2.

M is (-3, -2, -1) and N is (0, -5, 2)

Find the co-ordinates of Q.

<u>Note</u> that QN is shown as -2 because the two line segments are MQ and QN, and QN is in the opposite direction to MQ.

Solution: Q is Q(6, -11, 8)

Example:

If P divides AB in the ratio m: n, show that p, the position vector of P is given by:

$$p = \frac{mb + na}{m + n}$$

$$\frac{\overrightarrow{AP}}{PB} = \frac{m}{n} \quad so \quad n\overrightarrow{AP} = m\overrightarrow{PB}$$

$$\therefore \quad \mathbf{n} (p-a) = \mathbf{m} (b-p)$$

$$\mathbf{n} p - \mathbf{n} a = \mathbf{m} b - \mathbf{m} p$$

$$\mathbf{n} p + \mathbf{m} p = \mathbf{m} b + \mathbf{n} a$$

$$(\mathbf{n} + \mathbf{m}) p = \mathbf{m} b + \mathbf{n} a$$

$$p = \frac{mb + na}{m+n}$$

q.e.d

Vectors

Unit Vectors

Definition:

A unit vector has a magnitude of 1

If
$$\overrightarrow{AB} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 then $a^2 + b^2 + c^2 = 1$

Unit Vectors i, j, k

The unit vectors in the directions of the axes, OX, OY and OZ are denoted by:

$$\boldsymbol{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Every vector can be expressed in terms of the unit vectors i, j, k.

The position vector \mathbf{p} of the point P (a, b, c) is

$$\mathbf{p} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= a \mathbf{i} + b \mathbf{j} + c \mathbf{k}$$

where a, b and c are the components of the vector \boldsymbol{p}

Basic Operations:

If a = 3i + 2j - k and b = 2i - 5j + 3k

Then

1. Calculate a + b

2. Calculate a - b

3. Calculate | *a* |

4. Calculate |a + b|

5. Express $2 \boldsymbol{a} + 3 \boldsymbol{b}$ in component form

6. Express $p = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix}$ in unit vector form

7. $a\mathbf{i} + b\mathbf{j} + \frac{1}{2}\mathbf{k}$ is a unit vector. Find the relation between a and b Add the components: a + b = 5i - 3j + 2k

Subtract the components: $\mathbf{a} - \mathbf{b} = \mathbf{i} + 7\mathbf{j} - 4\mathbf{k}$

 $|a| = \sqrt{(3^2 + 2^2 + (-1)^2)} = \sqrt{(9 + 4 + 1)} = \sqrt{14}$

From (1): a + b = 5i - 3j + 2k

So $|\boldsymbol{a} + \boldsymbol{b}| = \sqrt{(5^2 + (-3)^2 + 2^2)} = \sqrt{(25 + 9 + 4)} = \sqrt{38}$

 $2 \mathbf{a} + 3 \mathbf{b} = 2 \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ -2 \end{pmatrix} + \begin{pmatrix} 6 \\ -15 \\ 9 \end{pmatrix} = \begin{pmatrix} 12 \\ -11 \\ 7 \end{pmatrix}$

p = 4i - 5k (Note that there is no j component)

 $a^2 + b^2 + (\frac{1}{2})^2 = 1$ $\therefore a^2 + b^2 + \frac{1}{4} = 1$ $\therefore a^2 + b^2 = \frac{3}{4}$

Vectors

Scalar Product of two vectors

The scalar product results from multiplying two vectors together.

For two vectors \boldsymbol{a} and \boldsymbol{b}

The scalar product is written as a.band defined as:

$$a.b = |a||b|\cos\theta$$

neither a nor b being zero. where θ is the angle between the vectors.

 $\boldsymbol{\theta}$ is the angle between the vectors pointing OUT from the vertex

a.b is a real number, the sign of which is determined by the size of angle θ .

A practical explanation of this comes from physics.

Work done = Force x displacement = $|\mathbf{F}| |\mathbf{x}| \cos \theta$

Force and displacement are vectors (both have magnitude and direction).

The result, the work done is a **scalar** quantity.

Component form of a.b

An alternative form for the scalar product can be derived using components.

$$a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Where
$$\boldsymbol{a} = x_1 \boldsymbol{i} + y_1 \boldsymbol{j} + z_1 \boldsymbol{k}$$
 $\boldsymbol{a} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$

Where
$$\mathbf{a} = \mathbf{x}_1 \mathbf{i} + \mathbf{y}_1 \mathbf{j} + \mathbf{z}_1 \mathbf{k}$$
 $\mathbf{a} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ and $\mathbf{b} = \mathbf{x}_2 \mathbf{i} + \mathbf{y}_2 \mathbf{j} + \mathbf{z}_2 \mathbf{k}$ $\mathbf{b} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$

Perpendicular Vectors $a \cdot b = 0$

If the scalar product $\mathbf{a} \cdot \mathbf{b} = 0$ then if neither a nor b are zero, $\cos \theta$ must be zero, so $\theta = 90^{\circ}$

The vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular

Examples:

- 1. Calculate $a \cdot b$ for |a| = 2, |b| = 5, $\theta = \pi/6$
- 2. Calculate $\mathbf{a} \cdot \mathbf{b}$ for $\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$
- 3. Calculate $\mathbf{p} \cdot \mathbf{q}$ for $\mathbf{p} = \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} -1 \\ 4 \\ 8 \end{pmatrix}$

What can you deduce about p and q?

Solutions:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$a \cdot b = |a| |b| \cos \theta$$
 $a \cdot b = 2 \times 5 \times \pi/6 = 10\pi/6 = 5\pi/3$

$$a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2 = 2 \times 1 + (-1) \times 0 + (-3) \times (-2) = 8$$

$$p \cdot q = x_1 x_2 + y_1 y_2 + z_1 z_2 = 4 \times (-1) + (-3) \times 4 + 2 \times 8 = 0$$

Since neither p nor q are zero, then p and q are perpendicular.

Vectors

Angle between two vectors

The angle θ between two vectors is:

$$\cos\theta = \frac{a.b}{|a||b|}$$

Assuming that neither a nor b are zero.

Note:
$$\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \theta = 90^{\circ} \text{ or } \pi/2$$

i.e. \mathbf{a} is perpendicular to \mathbf{b}
assuming $\mathbf{a} \neq 0, \mathbf{b} \neq 0$

Remember:

 θ is the angle between the vectors when they point OUT from the vertex. Choose your vectors carefully.

This is derived from the two definitions of scalar product:

$$a.b = |a||b|\cos\theta$$

$$a.b = x_1x_2 + y_1y_2 + z_1z_2$$

hence
$$\cos \theta = \frac{\boldsymbol{a} \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{|\boldsymbol{a}||\boldsymbol{b}|}$$

Example:

1. Calculate the size of the angle between the

vectors:
$$\mathbf{p} = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

Using:
$$\cos \theta = \frac{p \cdot q}{|p||q|}$$
 $p \cdot q = 6 - 3 + 10 = 13$

$$|\mathbf{p}| = \sqrt{(3^2 + (-1)^2 + 5^2)} = \sqrt{35}$$
 $|\mathbf{q}| = \sqrt{(2^2 + 3^2 + 2^2)} = \sqrt{17}$
So $\cos \theta = \frac{13}{\sqrt{35}\sqrt{17}} = 0.5329...$ $\theta = \cos^{-1}(0.5329...)$

Hence
$$\theta = 57.8^{\circ}$$
 (1 d.p.)

Example:

2. Calculate the size of the angle between vectors:

$$u = i + 3j - k$$
 and $v = 2i - 3j - 5k$

Using:
$$\cos \theta = \frac{u.v}{|u||v|}$$
 $u \cdot v = 2 - 9 + 5 = -2$

$$|\mathbf{u}| = \sqrt{(1^2 + 3^2 + (-1)^2)} = \sqrt{11}$$
 $|\mathbf{v}| = \sqrt{(2^2 + (-3)^2 + (-5)^2)} = \sqrt{38}$
So $\cos \theta = \frac{-2}{\sqrt{11}\sqrt{38}} = -0.0978...$ $\theta = \cos^{-1}(-0.0978...)$

Hence
$$\theta_{acute} = 84.4^{\circ}$$
 (1 d.p.) So $\theta = 180$ - $84.4^{\circ} = 95.6^{\circ}$

Note:
$$\mathbf{a} \cdot \mathbf{b} < 0 \implies \theta$$
 is obtuse $(2^{\text{nd}} \text{ quadrant}) - \text{because } \cos \theta < 0$

Example:

3. Calculate the size of angle ABC:

Remember – the angle is between vectors pointing OUT of the vertex.

We need the scalar product of BA and BC

$$\overline{BA} = a - b = \begin{pmatrix} -2 - 1 \\ 0 - 6 \\ 5 - (-8) \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \\ 13 \end{pmatrix} \qquad \overline{BC} = c - b = \begin{pmatrix} 7 - 1 \\ 9 - 6 \\ 4 - (-8) \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 12 \end{pmatrix}$$

$$\overline{BA}.\overline{BC} = \begin{pmatrix} -3 \\ -6 \\ 13 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \\ 12 \end{pmatrix} = -18-18+156=120 \qquad \qquad |\overline{BA}| = \sqrt{9+36+169} = \sqrt{214} \\
|\overline{BC}| = \sqrt{36+9+144} = \sqrt{189}$$

$$\cos \theta = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left| \overrightarrow{BA} \right| \left| \overrightarrow{BC} \right|} = \frac{120}{\sqrt{214\sqrt{189}}}$$
 = 0.5967... So $\theta = 53.4^{\circ}$
Hence $\angle ABC = 53.4^{\circ}$

Vectors

Some Results of the Scalar Product

$$\mathbf{a.a} = a^2$$

$$i.i = j.j = k.k = 1$$

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = 1$$

$$i.j = i.k = j.k = 0$$

Using: $|\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$

$$a.a = |a| |a| |\cos 0^{\circ} = |a| |a| |x| = a^{2}$$
 where $|a| = a$

$$i.i = |i| |i| |i| \cos 0^{\circ} = |i| |i| |x| = 1 |x| |x| = 1$$
 where $|i| = 1$

Obtain equivalent result for j.j and k.k

$$i \cdot j = |i| |j| \cos 90^{\circ} = |i| |j| |x| 0 = 1 |x| 1 |x| 0 = 0$$
 where $|i| = 1, |j| = 1$

Obtain equivalent result for j.k and i.k

Distributive Law

$$a.(b+c) = a.b + a.c$$

Example:

Parallel vectors \boldsymbol{b} and \boldsymbol{c} are inclined at 60° to vector \boldsymbol{a} .

$$|a| = 3$$
, $|b| = 2$, $|c| = 4$. Evaluate $a \cdot (a+b+c)$

$$a.(a+b+c) = a.a+a.b+a.c$$

$$= 3^{2} + 3 \times 2 \times \cos 60^{\circ} + 3 \times 4 \times \cos 60^{\circ} \text{ (since } |\boldsymbol{a}||\boldsymbol{a}|= a^{2} = 3 \times 3 \text{)}$$
$$= 9 + 6 \times \frac{1}{2} + 12 \times \frac{1}{2}$$

Example:

The vectors \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are defined as:

$$a = 3i + j + 4k$$

$$\boldsymbol{b} = -2\boldsymbol{i} + \boldsymbol{j} - \boldsymbol{k}$$

$$c = -i + 4i + 2k$$

- a) Evaluate a.b + a.c
- b) Make a deduction about the vector b + c

Solution:

$$a.b = 3 \times (-2) + 1 \times 1 + 4 \times (-1) = -6 + 1 - 4 = -9$$

$$a.c = 3 \times (-1) + 1 \times 4 + 4 \times 2 = -3 + 4 + 8 = 9$$

$$a.b + a.c = -9 + 9 = 0$$
 But $a.b + a.c = a.(b + c)$

So
$$a \cdot (b + c) = 0$$
 hence $b + c$ is perpendicular to a

Example:

Evaluate:

1.
$$i.(i+j)$$

$$2. \qquad j.(i+k)$$

3.
$$i^2 + j^2 + k^2$$

4.
$$i.(i+j+k)$$

Solutions:

1.
$$i.(i+j) = i.i + i.j = 1 + 0 = 1$$

2.
$$\mathbf{j}.(\mathbf{i} + \mathbf{k}) = \mathbf{j}.\mathbf{i} + \mathbf{j}.\mathbf{k} = 0 + 0 = 0$$

3.
$$i^2 + j^2 + k^2 = 1 + 1 + 1 = 3$$

4.
$$i.(i + j + k) = i.i + i.j + i.k = 1 + 0 + 0 = 1$$

Further Differentiation and Integration

Derivative of sin x and cos x

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

If we consider the graph of $y = \sin x$ and then sketch below it, the graph of the derived function, we can deduce that the graph of the derived function is $y = \cos x$.

Similarly we can deduce that the graph of the derived function from $y = \cos x$ is $y = -\sin x$

$$y = \cos x \implies d/dx (\cos x) = -\sin x$$

We can of course prove this using the limit formula.

The same rules of differentiation apply as to algebraic functions:

$$y = 3\sin x$$

$$dy/dx = 3\cos x$$

$$y = 2\cos x + \sin x$$

$$dy/dx = -2\sin x + \cos x$$

$$y = x^2 - 4\sin x$$

$$dy/dx = 2x - 4\cos x$$

multiplying by a constant

$$y = f(x) + g(x)$$

Straight line form

The same rule applies as before when fractions are involved – get into straight line form

Example:

$$y = \frac{x^3 + x^2 \sin x}{x^2}$$

$$y = \frac{x^3}{x^2} + \frac{x^2 \sin x}{x^2} = x + \sin x$$
 $\frac{dy}{dx} = 1 + \cos x$

Examples:

1.
$$y = 2\sin x$$

2.
$$y = 1 - \sin x$$

3.
$$y = 1 + \cos x$$

4.
$$y = \frac{1}{2} \cos x$$

5.
$$y = \sin x - \cos x$$

6.
$$y = 3\sin x + 2\cos x$$

7.
$$y = x + \cos x$$

8.
$$y = \sqrt{x - \cos x}$$

9.
$$y = x^2 + 2x - 3\sin x$$

$$10. \qquad y = \frac{1 - x \cos x}{x}$$

Examples:

1.
$$dy/dx = 2\cos x$$

2.
$$dy/dx = -\cos x$$

3.
$$dy/dx = -\sin x$$

4.
$$y = -\frac{1}{2} \sin x$$

5.
$$dy/dx = \cos x + \sin x$$

6.
$$dy/dx = 3\cos x - 2\sin x$$

7.
$$dy/dx = 1 - \cos x$$

8.
$$y = x^{\frac{1}{2}} - \cos x$$
 $dy/dx = \frac{1}{2} x^{-\frac{1}{2}} + \sin x$

9.
$$dy/dx = 2x + 2 - 3\cos x$$

10.
$$y = \frac{1}{x} - \frac{x \cos x}{x} = x^{-1} - \cos x$$
 $\frac{dy}{dx} = -x^{-2} + \sin x$

Further Differentiation and Integration

Chain Rule – Algebraic functions

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

The Chain Rule applies to composite functions

or 'Functions of a function'

These will always be of the form $(....)^n$

so:
$$\frac{d}{dx}(.....)^n = n(.....)^{n-1} \frac{d}{dx}(......)$$

It is important to be clear in your mind as to what the different functions are.

In function notation:

If y = f(g(x)), a composite function,

then
$$y = f(u)$$
 and $u = g(x)$

and
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{d}{dx}(f(g(x))=f'(u)\times\frac{d}{dx}(g(x))=f'(g(x))\frac{d}{dx}(g(x))$$

that is
$$\frac{d}{dx}f(\dots)=f'(\dots)\frac{d}{dx}(\dots)$$

Note (......) is the same function in each case

– the contents of the bracket.

This is just another way of stating the rule above.

Example of composite function:

$$y = (3x + 1)^3$$

$$f(x) = x^3$$
 $g(x) = 3x + 1$ $f(g(x)) = f(3x+1) = (3x + 1)^3$

Using different variables for each function we can write this as:

$$y = u^3 \qquad \quad u = 3x + 1$$

so
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \implies \frac{dy}{du} = 3u^2 \quad \frac{du}{dx} = 3$$

$$\frac{dy}{dx} = 3u^2 \times 3 = 3(3x+1)^2 \times 3 = 9(3x+1)^2$$

With practice, we do not need to go over all these steps – it will become intuitive what you have to do.

Practical Application

Differentiate the bracket – with respect to the bracket then multiply by the derivative of the bracket with respect to x.

$$\frac{d}{d(...)} \times \frac{d(...)}{dx}$$
 d by d (bracket) times d (bracket) by dx

In the above example:

$$y = (3x + 1)^3$$

 $dy/dx = 3(3x + 1)^2 \times 3 = 9(3x + 1)^2$

This will become clear and obvious with practice.

Examples:

1.
$$y = (x - 1)^4$$

2.
$$y = (5x + 1)^2$$

3.
$$y = (4 - u^2)^3$$

4.
$$y = (t^3 - 5)^{-3}$$

$$5. \qquad y = \frac{1}{2x+3}$$

6.
$$v = (x^2 + 2x)^{-1}$$

7.
$$v = \sqrt{(t-2)(t+1)}$$

Solutions:

1.
$$dv/dx = 4(x-1)^3 \times 1 = 4(x-1)^3$$

2.
$$dy/dx = 2(5x + 1)^{1} \times 5 = 10(5x + 1)$$

3.
$$dy/du = 3(4 - u^2)^2 \times (-2u) = -6(4 - u^2)^2$$

4.
$$dy/dt = -3(t^3 - 5)^{-4} \times 3t^2 = -9t^2(t^3 - 5)^{-4}$$

5.
$$y = (2x + 3)^{-1}$$
 $dy/dx = -1(2x + 3)^{-2} = -(2x + 3)^{-2}$

6.
$$dy/dx = -1(x^2 + 2x)^{-2} \times (2x + 2) = -(2x + 2)(x^2 + 2x)^{-2}$$

7.
$$y = (t^2 - t - 2)^{1/2}$$
 $dy/dt = \frac{1}{2}(t^2 - t - 2)^{-\frac{1}{2}} \times (2t - 1)$
 $dy/dt = \frac{1}{2}(2t - 1)(t^2 - t - 2)^{-\frac{1}{2}}$

Further Differentiation and Integration

Chain Rule – Trigonometric functions

The Chain Rule also applies to trigonometric functions. These will appear in **two** forms:

1.
$$y = \sin(....)$$

or
$$y = cos(....)$$

2.
$$y = (.... \sin x)^n$$

or
$$y = (\ldots \cos x)^n$$

These are dealt with in exactly the same way as for algebraic functions.

1.
$$y = \sin(...)$$

1.
$$y = \sin(...)$$
 $\frac{dy}{dx} = \cos(....) \frac{d}{dx}(....)$

$$y = \cos(\ldots)$$

$$y = \cos(...)$$
 $\frac{dy}{dx} = -\sin(....)\frac{d}{dx}(....)$

2.
$$y = (.... \sin x)$$

2.
$$y = (... \sin x)^n \frac{dy}{dx} = n(... \sin x)^{n-1} \frac{d}{dx} (... \sin x)$$

$$y = (\ldots \cos x)^{t}$$

y =
$$(... \cos x)^n$$
 $\frac{dy}{dx} = n(... \cos x)^{n-1} \frac{d}{dx} (... \cos x)$

As with algebraic functions, it is important to be clear in your mind what the two functions are.

With practice it becomes intuitive as to what you do.

Example:

1.
$$y = \sin 2x$$

This is $\sin(\ldots)$ where $(\ldots) = 2x$

So,
$$dy/dx = \cos 2x \times 2$$

$$dy/dx = 2 \cos 2x$$

2.
$$y = (1 + \cos x)^3$$

This is
$$(\ldots \cos x)^3$$

where
$$(...) = 1 + \cos x$$

So,
$$dy/dx = 3(...)^2 \times (-\sin x)$$

$$dy/dx = -3\sin x (1 + \cos x)^2$$

3.
$$y = \sin^3 x$$

This is
$$y = (\sin x)^3$$

$$dy/dx = 3(\sin x)^2 \times \cos x$$

$$dy/dx = 3\cos x \sin^2 x$$

There will only be two functions at most, all you have to do is identify them, and use the above rules.

Examples:

1.
$$y = \cos 5x$$

2.
$$y = \sin(2x - 3)$$

3.
$$y = \cos(x^2 - 1)$$

4.
$$y = \sqrt{\sin x}$$
 Hint: write as $y = (\sin x)^{1/2}$

$$5. \qquad y = \cos^2 x$$

Hint: write as
$$y = (\cos x)^2$$

6.
$$y = \frac{1}{\sin t}$$

 $y = \frac{1}{\sin t}$ Hint: write as $y = (\sin t)^{-1}$

7.
$$y = \frac{3}{4600}$$

 $y = \frac{3}{4\cos t}$ Hint: write as $\frac{3}{4}(\cos t)^{-1}$

8.
$$y = \sin 2x + \cos 3x$$

9.
$$y = \sqrt{1 + \cos x}$$

 $y = \sqrt{(1 + \cos x)}$ Hint: write as $y = (1 + \cos x)^{1/2}$

 $y = \frac{1}{x} - \frac{1}{\sqrt{\sin x}}$ Hint: write as $y = x^{-1} - (\sin x)^{-1/2}$

 $y = 2 \sin x \cos x$ Hint: write as $y = \sin 2x$

Solutions:

1.
$$dy/dx = -5 \sin 5x$$

2.
$$dy/dx = cos(2x-3) \times 2 = 2 cos(2x-3)$$

3.
$$dy/dx = -\sin(x^2 - 1) \times 2x = -2x \sin(x^2 - 1)$$

4.
$$dy/dx = \frac{1}{2} (\sin x)^{-\frac{1}{2}} \times \cos x = \frac{1}{2} \cos \times (\sin x)^{-\frac{1}{2}}$$

5.
$$dy/dx = 2 (\cos x)^{1} (-\sin x) = -2 \sin x \cos x = -\sin 2x$$

6.
$$dy/dx = -1(\sin t)^{-2} \times \cos t = -\cos t (\sin t)^{-2}$$

7.
$$dy/dx = \frac{3}{4} (-1)(\cos t)^{-2} \times (-\sin t) = \frac{3}{4} \sin t (\cos t)^{-2}$$

8.
$$dy/dx = 2 \cos 2x - 3 \sin 3x$$

9
$$dy/dx = \frac{1}{2}(1 + \cos x)^{-\frac{1}{2}} \times (-\sin x) = -\frac{1}{2}\sin x (1 + \cos x)^{-\frac{1}{2}}$$

10.
$$dy/dx = -x^{-2} - (-1/2)(\sin x)^{-3/2}(\cos x) = -1/2 x^{-2}\cos x(\sin x)^{-3/2}$$

11.
$$dy/dx = 2 \cos 2x$$

Further Differentiation and Integration

Integration – Standard Integrals - 1

We will be able to integrate functions that we recognise as the result of a Chain Rule differentiation.

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c$$

Rather than remember the formula, it is better to understand how it is derived.

In principle -

- 1. Recognise the function as a Chain Rule derivative.
- 2. Work out what it must have come from.
- 3. Put in any necessary multipliers/divisors
- 4. Check the result by differentiation.

Sounds complicated, but again, with a little practice, it becomes second nature.

Consider:

$$\frac{d}{dx}(ax+b)^{n+1} = (n+1)(ax+b)^n a$$

So working backwards:

$$\int (ax+b)^n dx$$
 must have come from $(ax+b)^{n+1}$

but, upon differentiation we would get the multipliers n+1 from the *index* and a from the *bracket derivative*.

So we need to have these two multipliers in the **denominator** of the integrated function, in order to **cancel out** upon differentiation.

Examples:

Integrate these functions: (Don't forget the constant)

1.
$$(x+1)^4$$

2.
$$(3x-2)^2$$

3.
$$(x-5)^{-2}$$

4.
$$(5-2x)^{-3}$$

5.
$$(2x+1)^{1/2}$$

6.
$$(1-4x)^{-3/2}$$

7.
$$\sqrt{(v+4)}$$
 Straight line form is: $(v+4)^{1/2}$

8.
$$\frac{3}{(2t+3)^4}$$
 Straight line form is: $3(2t+3)^{-4}$

9.
$$\frac{1}{\sqrt{(2x+3)}}$$
 Straight line form is $(2x+3)^{-1/2}$

10.
$$\frac{2}{\sqrt[3]{(1-t)}}$$
 Straight line form is $2(1-t)^{-1/3}$

Solutions: (Check by differentiation)

In each case consider what function it came from:

1.
$$(x+1)^5 \times (^1/_5) = ^1/_5 (x+1)^5 + c$$

2.
$$(3x-2)^3 \times (1/3) \times (1/3) = 1/9 (3x-2)^3 + c$$

3.
$$(x-5)^{-1} \times (-1) = -(x-5)^{-1} + c$$

4.
$$(5-2x)^{-2} \times (-\frac{1}{2}) \times (-\frac{1}{2}) = \frac{1}{4} (5-2x)^{-2} + c$$

5.
$$(2x+1)^{3/2} \times \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} (2x+1)^{3/2} = \frac{1}{3} (2x+1)^{3/2} + c$$

6.
$$(1-4x)^{-1/2} \times (-2) \times (-\frac{1}{4}) = \frac{1}{2} (1-4x)^{-1/2} + c$$

7.
$$(v+4)^{3/2} \times ^2/_3 = ^2/_3 (v+4)^{3/2} + c$$

8.
$$3(2t+3)^{-3} \times (-1/3) \times 1/2 = -1/2 (2t+3)^{-3} + c$$

9.
$$(2x+3)^{1/2} \times 2 \times 1/2 = (2x+3)^{1/2} + c$$

10.
$$2(1-t)^{2/3} \times \sqrt[3]{2} \times (-1) = -3(1-t)^{2/3} + c$$

Further Differentiation and Integration

Integration – Standard Integrals - 2

Integration of trigonometric functions, is just the reverse of differentiation:

$$\int \cos x \, dx = \sin x + c$$

and

$$\int \sin x \ dx = -\cos x + c$$

We can also integrate trigonometric functions that we recognise as the result of a Chain Rule differentiation.

$$\int \cos(ax+b) \ dx = \frac{1}{a}\sin(ax+b) + c$$

and

$$\int \sin(ax+b) \ dx = -\frac{1}{a}\cos(ax+b) + c$$

Rather than remember the formula, again, it is better to understand how it is derived.

In principle -

- 1. Recognise the function as a Chain Rule derivative.
- 2. Work out what it must have come from.
- 3. Put in any necessary multipliers/divisors
- 4. Check the result by differentiation.

Since:

$$\frac{d}{dx}(\sin x) = \cos x$$

and

$$\frac{d}{dx}(\cos x) = -\sin x$$

Again, by considering what it must have come from:

$$\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$$

and

$$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b)$$

So we need to have the multiplier in the **denominator** of the integrated function, in order to **cancel out** upon differentiation.

Sounds complicated, but again, with a little practice, it becomes second nature.

Examples:

Integrate these functions: (Don't forget the constant)

- 1. 3cos x
- 2. 5sin x
- 3. sin 4x
- 4. 5 cos 2x
- 5. $3 \sin \frac{1}{2} x$
- 6. $\cos(x + 2)$
- 7. $\sin(3x + 4)$
- 8. $\sin 2x + \cos 3x$
- 9. $t^2 + 2\cos 2t$

Solutions: (Check by differentiation)

In each case consider what function it came from:

- 1. $3\sin x + c$
- $2. \quad -5\cos x + c$
- 3. $-\cos 4x \times (\frac{1}{4}) = -\frac{1}{4}\cos 4x + c$
- 4. $5 \sin 2x \times \frac{1}{2} = \frac{5}{2} \sin 2x + c$
- 5. $-3 \cos \frac{1}{2} x \times 2 = -6 \cos \frac{1}{2} x + c$
- 6. $\sin(x+2) + c$
- 7. $-\cos(3x+4) \times \frac{1}{3} = -\frac{1}{3}\cos(3x+4) + c$
- 8. $-\cos 2x \times \frac{1}{2} + \sin 3x \times \frac{1}{3} = -\frac{1}{2}\cos 2x + \frac{1}{3}\sin 3x + c$
- $\frac{1}{3}t^3 + 2\sin 2t \times \frac{1}{2} = \frac{1}{3}t^3 + \sin 2t + c$

Further Differentiation and Integration

Definite Trigonometric Integrals

Definite integrals of trigonometric functions are handled in exactly the same way as definite integrals of algebraic functions.

The limits are **ALWAYS** in **radians**.

The integral represents the area between the curve and the x-axis.

Areas below the x-axis are NEGATIVE.

The above integral represents the shaded area on the graph.

$$\int_0^{\pi/2} \sin x \ dx = \left[-\cos x \right]_0^{\pi/2} = \left(-\cos \frac{\pi}{2} \right) - \left(-\cos 0 \right)$$

$$=-0-(-1)=1$$

Examples:

1.
$$\int_{\pi/6}^{\pi/4} (1+\sin 2x) \, dx$$

$$= \left[x - \frac{1}{2}\cos 2x\right]_{\pi/6}^{\pi/4} = \left(\frac{\pi}{4} - \frac{1}{2}\cos\frac{\pi}{2}\right) - \left(\frac{\pi}{6} - \frac{1}{2}\cos\frac{\theta}{3}\right)$$

$$= \left(\frac{\pi}{4} - 0\right) - \left(\frac{\pi}{6} - \frac{1}{2} \times \frac{1}{2}\right) = \frac{\pi}{12} + \frac{1}{4}$$

$$2. \qquad \int_0^\pi (\sin t + \cos t) \, dt$$

$$= \left[-\cos t + \sin t \right]_0^{\pi} = \left(-\cos \pi + \sin \pi \right) - \left(-\cos 0 + \sin 0 \right)$$
$$= \left(-(-1) + 0 \right) - \left(-1 + 0 \right) = 1 + 1 = 2$$

3. Calculate the total area of the shaded region.

We cannot integrate between 0 and π because the areas above and below the x-axis will cancel out to zero.

We split the integral into two parts: from 0 to $\pi/2$ and from $\pi/2$ to π .

The second integral will be negative (below the x-axis) so we ignore the negative sign (since an area is always positive).

We then add the two areas together. However, by symmetry, the area below the x-axis is the same as that above the x-axis, apart from the sign.

Area above x-axis is
$$\int_0^{\pi/2} \sin 2x \ dx = \left[-\frac{1}{2} \cos 2x \right]_0^{\pi/2}$$

$$= \left(-\frac{1}{2}\cos 2 \times \frac{\pi}{2}\right) - \left(-\frac{1}{2}\cos 2 \times 0\right) = \left(-\frac{1}{2}\cos \pi\right) - \left(-\frac{1}{2}\cos 0\right)$$

$$= \left(-\frac{1}{2}(-1)\right) - \left(-\frac{1}{2}(1)\right) = \frac{1}{2} - \left(-\frac{1}{2}\right) = \frac{1}{2} + \frac{1}{2} = 1$$

So total area is twice this. **Hence total shaded area** = 2

The Exponential and Logarithmic Functions

Growth Function

This is of the form:

$$A(n) = ka^n$$

with a > 1

Examples of growth functions:

Bank Account - compound interest

£200 at 7% for 6 years. Amount after 6 years $A = 200 \times 1.07^6$

Population growth

Now 47,000 growth 3% per year. Population after 9 years $A = 47000 \times 1.03^9$

Appreciation

House cost £55 000 when purchased. It appreciates at 4% for 25 years.

Value after 25 years $A = 55000 \times 1.04^{25}$

Decay Function

This is of the form:

$$A(n) = ka^n$$

with a < 1

Examples of decay functions:

Evaporation

Initially 10 litres – evaporates at 5% per hour (NB loses 5% means 95% remains) After 15 hours amount left is: $A=10\times0.95^{15}$

Population decline

Was 20,000 declines 3% per year. (NB declines 3% means 97% remains) Population after 20 years $~A=20~000\times0.97^{20}$

Depreciation

Car cost £23 000 depreciates 20% each year. (NB loses 20% means worth 80%) Value after 3 years $A=23\,000\times0.8^3$

Examples:

1. An open can is filled with 2 litres of cleaning fluid, which evaporates at the rate of 30% per week. Construct a function for the amount of fluid (in millilitres) left after *t* weeks.

Calculate how much fluid remains after 6 weeks.

 A population of 100 cells increases by 60% per hour. Construct a function to show the number of cells after after h hours.

Calculate how many cells there would be after 12 hours

3. Radium has a half life of 1600 years. This means that a given mass of radium will decay steadily and be halved in 1600 years.

Check that, starting with 5g of radium, the decay function for the mass after *t* years is

$$R(t) = 5(0.5)^{t/1600}$$

Calculate the mass remaining after 400 years.

4. Construct a decay function for Carbon-14 which has a half-life of 5720 years. Using C_0 for the initial amount of carbon-14 present.

Solutions:

1. 30% evaporation, means that 70% remains

After 1 week $A = 2000 \times 0.7$ mls remain

After t weeks $A(t) = 2000 \times 0.7^{t}$ mls remain.

After 6 weeks $A(6) = 2000 \times 0.7^6 \text{ mls} = 235.3 \text{ mls remain}$

2. After one hour number of cells $N = 100 \times 1.6$

After h hours number of cells $N(h) = 100 \times 1.6^{h}$

After 12 hours number of cells $N(12) = 100 \times 1.6^{12} = 28, 147$ cells

3. If $R(t) = 5(0.5)^{t/1600}$ then put t = 1600 (half life)

which gives $R(t) = 5 \times 0.5^1 = 2.5$ g which is correct.

After 400 years $R(400) = 5(0.5)^{400/1600} = 5(0.5)^{0.25} = 4.2 \text{ g}$

4. $C(t) = C_0(0.5)^{t/5720}$

The Exponential and Logarithmic Functions

The exponential function

An exponential function is of the form

 a^{x}

where a is a constant.

If a > 0, the function is increasing (growth) If a < 0, the function is decreasing (decay)

a may take any positive value depends on situation function is modelling.

Note: In general an exponential function will take the form:

$$A(x) = ab^x$$

where both a and b are constants.

a will represent an initial value

b will represent the multiplier

x will represent the variable

odening.

A special exponential function $\sim e^x$

e'

e is a special constant – a never ending decimal like π .

 $e = 2.718\ 282\ 828\ \dots$

The number e crops up on many occasions in the natural world.

It is:
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

You can find this by pressing the e^x key on your calculator followed by '1 ='

This effectively is evaluating e^1 .

Linking the exponential and logarithmic functions.

$$y = a^x \Leftrightarrow log_a y = x$$

$$1 = a^0 \Leftrightarrow \log_a 1 = 0$$

$$a = a^1$$
 \Leftrightarrow $\log_a a = 1$

Use this relationship to switch between log and exponential forms.

Use these two relationships to simplify and evaluate logarithmic and exponential functions and expressions.

Examples:

1. Write in log form: $81 = 3^4$

2. Write in log form: $y^4 = 20$

3. Write in log form: $\frac{1}{9} = 3^{-2}$

4. Write in log form: $z^{1/2} = 10$

5. Write in exp. form: $\log_2 4 = 2$

6. Write in exp. form: $\log_{10} 100 = 2$

7. Write in exp. form: $\log_9 3 = \frac{1}{2}$

8. Write in exp. form: $\log_8 4 = \frac{2}{3}$

9. Write in exp. form: $\log_a c = b$

10. Solve: $\log_{x} 9 = 2$

11. Solve: $\log_4 x = 0.5$

12. Solve: $\log_3 81 = x$

13. Solve: $\log_{x} 7 = 1$

14. Solve: $\log_{10} x = 0.5$

Solutions:

1. $\log_3 81 = 4$

2. $\log_{v} 20 = 4$

3. $\log_3 \frac{1}{9} = -2$

4. $\log_z 10 = \frac{1}{2}$

5. $2^2 = 4$

6. $10^2 = 100$

7. $9^{1/2} = 3$

8. $8^{2/3} = 4$ i.e. $(\sqrt[3]{8})^2 = 4$

9. $a^b = c$

10. $x^2 = 9$ so x = 3

11. $4^{0.5} = x$ so $4^{1/2} = x$ $\sqrt{4} = x$ x = 2

12. $3^x = 81$ so x = 4

13. $x^1 = 7$ x = 7

14. $10^{0.5} = x$ Use calculator $10 \text{ y}^x 0.5 = 3.162...$ x = 3.16 (2 d.p)

The Exponential and Logarithmic Functions

Rules of Logarithms

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a x^p = p \log_a x$$

when working with logs, always be on the lookout for powers of the base,

this will enable you to simplify expressions

These are derived from the corresponding Rules of Indices

$$a^m \times a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$\left(a^{m}\right)^{p}=a^{mp}$$

Proofs:

Let
$$\log_a x = m$$
 $\log_a y = n$ then $a^m = x$ and $a^n = y$

1.
$$xy = a^m \times a^n = a^{m+n}$$
 so $xy = a^{m+n}$ \Rightarrow $log_a xy = m + n$ $log_a xy = m + n$ \Rightarrow $log_a xy = log_a x + log_a y$

$$2. \qquad x/y \ = \ a^m \div a^n \ = \ a^{m-n} \qquad \text{so} \quad xy = a^{m-n} \qquad \Rightarrow \quad \log_a x/y = m-n \\ \log_a x/y = m-n \ \Rightarrow \ \log_a x/y = \log_a x - \log_a y$$

3.
$$x^p = (a^m)^p = a^{mp}$$
 so $x^p = a^{mp}$ \Rightarrow $\log_a x^p = mp$ $\log_a x^p = mp$ \Rightarrow $\log_a x^p = p \log_a x$

Examples:

Simplify – assume same base

$$1. \quad \log 7 + \log 2$$

2.
$$\log 12 - \log 2$$

3.
$$\log 6 + \log 2 - \log 3$$

4.
$$\log 2 + 2 \log 3$$

5.
$$2 \log 3 + 3 \log 2$$

Simplify and evaluate

6.
$$\log_8 2 + \log_8 4$$

7.
$$\log_5 100 - \log_5 4$$

8.
$$\log_4 18 - \log_4 9$$

9.
$$2 \log_{10} 5 + 2 \log_{10} 2$$

10.
$$3 \log_3 3 + \frac{1}{2} \log_3 9$$

11.
$$5 \log_8 2 + \log_8 4 - \log_8 16$$

12.
$$\log_2(\frac{1}{2}) - \log_2(\frac{1}{4})$$

Solve for x:

13.
$$\log_a x + \log_a 2 = \log_a 10$$

14.
$$\log_a x - \log_a 5 = \log_a 20$$

15.
$$\log_a x + 3\log_a 3 = \log_a 9$$

Solutions:

$$1. \qquad \log 7 \times 2 = \log 14$$

2.
$$\log 12 \div 2 = \log 6$$

3.
$$\log (6 \times 2 \div 3) = \log 4$$

4.
$$\log 2 + \log 3^2 = \log 2 \times 3^2 = \log 18$$

5.
$$\log 3^2 + \log 2^3 = \log 9 + \log 8 = \log 9 \times 8 = \log 72$$

6.
$$\log_8 2 \times 4 = \log_8 8 = 1$$

7.
$$\log_5 (100 \div 4) = \log_5 25 = \log_5 5^2 = 2 \log_5 5 = 2$$

8.
$$\log_4 (18 \div 9) = \log_4 2 = \log_4 4^{\frac{1}{2}} = \frac{1}{2}$$

9.
$$\log_{10} 5^2 + \log_{10} 2^2 = \log_{10} (25 \times 4) = \log_{10} 100 = \log_{10} 10^2 = 2$$

10.
$$\log_3 27 + \log_3 9^{1/2} = \log_3 27 \times 3 = \log_3 81 = \log_3 3^4 = 4$$

11.
$$\log_8 32 + \log_8 4 - \log_8 16 = \log_8 (32 \times 4 \div 16) = \log_8 8 = 1$$

12.
$$\log_2 2^{-1} - \log_2 {1/2}^2 = \log_2 2^{-1} - \log_2 2^{-2} = -1 - (-2) = 1$$

13.
$$\log_a 2x = \log_a 10$$
 : $2x = 10$: $x = 5$

14.
$$\log_a (x/5) = \log_a 20$$
 $\therefore x/5 = 20$ $\therefore x = 100$

15.
$$\log_a x + 3\log_a 3 = \log_a 9$$
 $\therefore \log_a x + \log_a 27 = \log_a 9$
 $\log_a 27x = \log_a 9$ $\therefore 27x = 9$ $\therefore x = \frac{1}{3}$

The Exponential and Logarithmic Functions

Calculator keys

 \log - means \log_{10} (common \log)

In - means log_e (natural log)

 $\boldsymbol{y}^{\boldsymbol{x}}$ — means $% \boldsymbol{y}^{\boldsymbol{x}}$ — raise to the power of

 e^{x} - means e raised to the power of

10^x - means 10 raised to the power of

You will need to use the above keys, when solving exponential or logarithmic equations.

Evaluate:

$$\log_{10} 2 \Rightarrow \log 2 \Rightarrow 0.3010...$$

$$\log_e 5 \Rightarrow \boxed{\ln} \boxed{5} = \boxed{1.6094...}$$

$$5^{0.2} \Rightarrow \boxed{5} \boxed{y^x} \boxed{0.2} \boxed{=} \boxed{1.3797...}$$

$$e^{1.7}$$
 \Rightarrow 2^{nd} Fn 1.7 $=$ $5.4739...$

$$10^{0.3010}$$
 \Rightarrow $2^{\text{nd}} \text{ Fn} \left[\frac{\log/10^{\text{x}}}{0.3010} \right] = 1.99986...$

or
$$\Rightarrow$$
 $\boxed{10}$ $\boxed{y^x}$ $\boxed{0.3010}$ $\boxed{=}$ $\boxed{1.99986...}$

Solving exponential equations.

Solving equations of the type:

1.
$$5^x = 4$$

Take log_{10} of both sides.

Changes to log form:
$$log_{10} 5^x = log_{10} 4$$

$$x \log_{10} 5 = \log_{10} 4$$

$$x = \log_{10} 4 \div \log_{10} 5 = 0.8613 \dots$$

2.
$$20 = e^t$$

Take log_e of both sides.

(Always choose \log_e when dealing with growth or decay functions with e as the base because \log_e e, makes calculation simpler)

In both the above cases other constants many be involved.

Changes to log form: $\log_e 20 = \log_e e^t$

$$\log_e 20 = t \log_e e$$
 (but $\log_e e = 1$)

$$t = \log_e 20 = 2.9957...$$

Examples:

1. Solve: $8 \times 0.6^{x} = 16$

2. $D(t) = 500 (0.65)^t$

For what value of t does D(t) = 2

3. Solve:
$$e^{3t} = 120$$

4.
$$S(t) = 225 e^{-0.36t}$$

For what value of t is S(t) = 70

Solutions:

1.
$$0.6^{x} = 2$$
 $\log_{10} 0.6^{x} = \log_{10} 2$ $x \log_{10} 0.6 = \log_{10} 2$ $x = \log_{10} 2 \div \log_{10} 0.6$ $x = -1.36$

2.
$$2 = 500 (0.65)^t$$
 $0.004 = 0.65^t$ $\log_{10} 0.004 = \log_{10} 0.65^t$ $\log_{10} 0.004 = t \log_{10} 0.65$ $t = \log_{10} 0.004 \div \log_{10} 0.65$

t = 12.8

3.
$$\log_e e^{3t} = \log_e 120$$
 3t $\log_e e = \log_e 120$ 3t $= \log_e 120$
t $= (\log_e 120) \div 3$ (careful here) **t** = **1.596**

4.
$$70 = 225 e^{-0.36t} \qquad 70 \div 225 = e^{-0.36t} \qquad 0.3111 = e^{-0.36t}$$

$$\log_e 0.3111 = \log_e e^{-0.36t} \qquad \log_e 0.3111 = -0.36t \log_e e$$

$$\log_e 0.3111 = -0.36t \qquad t = \log_e 0.3111 \div (-0.36) \qquad t = 3.243$$

The Exponential and Logarithmic Functions

Experiment and Theory

In experimental work, data can often be modelled by equations of the form:

$$y = ax^n$$
 (polynomial)
or
 $y = ab^x$ (exponential)

both are similar.

polynomial graph

exponential graph

By taking logs of both sides of the above equations we find that the graph of each is a straight line.

A **polynomial** graph is a straight line when $\log x$ is plotted against $\log y$

An **exponential** graph is a straight line when ${\bf x}$ is plotted against ${\bf log}\ {\bf y}$

So when we have a graph or a table of data, we find the **gradient** and the **y-intercept** of the straight line.

You will be given the relationship in the question.

Take logs of both sides of the given relationship (base 10 or base e according to the question)

Equate **log a** to the **y-intercept**. Equate **n** or **log b** to the **gradient**

Solve these equations to calculate the constants.

Proof:

$$y = ax^n$$

$$\log y = \log ax^n$$

$$\log y = \log a + \log x^n$$

$$\log y = \log a + n \log x$$

$$\log y = \log a + n \log a$$

This looks like:

$$Y = log a + n X$$

where n is the gradient and log a is the y-intercept.

$$y = ab^x$$

$$\log y = \log ab^x$$

$$\log y = \log a + \log b^x$$

$$\log y = \log a + x \log b$$

This looks like:

$$Y = \log a + X \log b$$

where log b is the gradient and log a is the y-intercept.

Example:

The following data was obtained from an experiment

X	1.1	1.2	1.3	1.4	1.5	1.6	Logs were taken of
y	2.06	2.11	2.16	2.21	2.26	2.30	

$\log_{10} x$	0.04	0.08	0.11	0.15	0.18	0.20
$\log_{10} y$	0.31	0.32	0.33	0.34	0.35	0.36

a graph was plotted – the line of best fit showing a straight line. An equation of the form $y = ax^n$ is suggested.

Find the values of a and n

Suggested relation is $y = ax^n$

Take log_{10} of both sides log_{10} $y = log_{10}$ ax^n

$$\Rightarrow \log_{10} y = \log_{10} a + \log_{10} x^n$$

$$\Rightarrow \log_{10} y = \log_{10} a + n \log_{10} x \dots (1)$$

This is a straight line with:

y-intercept =
$$log_{10}$$
 a

$$gradient = n$$

From the graph y-intercept = 0.31 and gradient = 0.29

i.e.
$$\log_{10} a = 0.31$$
 So $a = 10^{0.31} = 2.0 (1 \text{ d.p.})$

$$n = 0.29 = 0.3$$
 (1 d.p.) So relationship is: $y = 2x^{0.3}$

OR pick two points on the line i.e. (0.04, 0.31) and (0.18, 0.35)

$$0.31 = 0.04n + \log_{10} a$$

$$0.35 = 0.18n + \log_{10} a$$

Subtracting gives
$$n = 0.29$$
, $\log_{10} a = 0.3$... $a = 10^{0.3} = 2 (1 \text{ d.p.})$

Again this gives the relationship of: $v = 2x^{0.3}$

Example

Six spherical sponges were dipped in water and weighed to see how much water each could absorb. The diameter (*x* millimetres) and gain in weight (*y* grams) were measured and recorded for each sponge.

It is thought that x and y are connected by a relationship of the form $y = ax^b$

By taking logarithms of the values of x and y, this table was constructed.

$X (= \log_e x)$	2.10	2.31	2.40	2.65	2.90	3.10
$Y(=\log_e y)$	7.00	7.60	7.92	8.70	9.38	10.00

A graph was drawn and is shown here.

- a) Find the equation of the line in the form Y = mX + c
- b) Hence find the values of the constants *a* and *b*

in the relationship $y = ax^b$

Solution:

$$y = ax^b$$

$$\log_e y = \log_e ax^b$$

$$\log_e y = \log_e a + \log_e x^b$$

$$\log_a y = \log_a a + b \log_a x$$

This is of the form Y = mX + c where m = b and $\log_e a = c$

b) Choose two points on the line of best fit. (2.1, 7.0) and (3.1, 10.0)

Substitute into $\log_e y = \log_e a + b \log_e x$

giving:
$$7.0 = \log_e a + 2.1 b \dots (1)$$

$$10.0 = \log_e a + 3.1 b$$
 (2)

subtracting: (2) – (1) \Rightarrow 3.0 = b substituting \Rightarrow log_e a = 0.7 so $a = e^{0.7}$ a = 2.01...

Hence relationship is: $y = 2x^3$ i.e. a = 2.0 and b = 3.0 (1 d.p.)

Note: You should be confident in applying the method in part (b) rather than relying on the gradient and y-intercept, as in this case, you cannot determine the y-intercept.

The Exponential and Logarithmic Functions

Example

Find the relation $y = ab^x$ for this data

X	2.15	2.13	2.00	1.98	1.95	1.93
у	83.33	79.93	64.89	62.24	59.70	57.26

Solution:

$$y = ab^{x}$$

$$\log_{10} y = \log_{10} ab^{x}$$

$$\log_{10} y = \log_{10} a + \log_{10} b^{x}$$

$$\log_{10} y = \log_{10} a + x \log_{10} b$$

Add a row to the table showing log_{10} y

Plot data $log_{10} \ y$ against x

 $(because\ relationship\ is\ exponential)$

1.94 1.92 1.90 1.88 1.86 1.84 1.82 1.80 1.78 1.76 1.74 1.90 1.95 2.00 2.05 2.10 2.15 2.20

to determine line of best fit which will indicate which points to use.

X	2.15	2.13	2.00	1.98	1.95	1.93
у	83.33	79.93	64.89	62.24	59.70	57.26
log ₁₀ y	1.92	1.90	1.81	1.79	1.78	1.76

From graph, choose points (1.93, 1.76) and (2.15, 1.92) corresponding to $(x, \log_{10} y)$

Substituting into $\log_{10} y = \log_{10} a + x \log_{10} b$

gives:
$$1.92 = \log_{10} a + 2.15 \log_{10} b$$
 (1) and: $1.76 = \log_{10} a + 1.93 \log_{10} b$ (2)

Subtracting:
$$(1)-(2) \qquad 0.16 \ = \ 2.15 \log_{10} b - 1.93 \log_{10} b$$

$$0.16 \ = 0.22 \log_{10} b$$

$$\log_{10} b = 0.727$$

$$b = 10^{0.727} \ = \ 5.3 \ (1 \ d.p.)$$

Substituting into (1)
$$\Rightarrow$$
 $\log_{10}a = 1.92 - 2.15 \log_{10} 5.3$ $\log_{10}a = 1.92 - 1.56$ $\log_{10}a = 0.36$ $a = 10^{0.36} = 2.29 = 2.3 (1 d.p.)$

Hence relationship is: $y = 2.3(5.3)^x$

The Wave Function $a \cos x + b \sin x$

When two waves of the form $a \cos x + b \sin x$ are combined together, the result is a sine or cosine wave that is shifted in phase from the original waves.

The wave function

We can express a $\cos x + b \sin x$ in the form of a single wave.

This can be a sine or a cosine wave, since a cosine wave is simply a sine shifted 90° to the left.

This single wave is called the wave function.

 $R \cos (x \pm \alpha)$ and $R \sin (x \pm \alpha)$

There are four different forms we can use – all of these are equivalent – we choose whatever is convenient. You will always be given the appropriate form in the question.

Expressing a $\cos x + b \sin x$ as R $\cos (x \pm \alpha)$ or R $\sin (x \pm \alpha)$

Example:

Express $3 \cos x + 5 \sin x$ in the form R cos (x - α)

Step 1.

Expand R cos (x - α)

Step 2.

Compare coefficients of sin x and cos x

Step 3.

Square and add to obtain R

Step 4.

Divide the $\sin\alpha$ equation by the $\cos\alpha$ equation. This gives you $\tan\alpha$.

Step 5.

Identify the quadrant for α by looking at the two equations obtained in step 2.

Step 6.

Calculate a

Step 7.

Put it all together

 $R \cos (x - \alpha) = R \cos x \cos \alpha + R \sin x \sin \alpha$

R sin
$$\alpha = 5$$
 (1)
R cos $\alpha = 3$ (2)

$$R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = 5^2 + 3^2$$

 $R^2 (\sin^2 \alpha + \cos^2 \alpha) = 5^2 + 3^2$

Note: $\sin^2 \alpha + \cos^2 \alpha = 1$ so, $R^2 = 5^2 + 3^2$ $R^2 = 34$ $\mathbf{R} = \sqrt{34}$

$$\frac{R \sin \alpha}{R \cos \alpha} = \frac{5}{3} \quad \text{note that} \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad \text{so} \quad \tan \alpha = \frac{5}{3}$$

From equation (1) and (2) look at the signs + of $\sin \alpha$ and $\cos \alpha$; $\sin \alpha$ is +, $\cos \alpha$ is + These conditions both apply in 1st quadrant only.

$$\tan \alpha = \frac{5}{3} \implies \alpha = 59.036...$$
 $\alpha = 59^{\circ}$

$$\therefore 3 \cos x + 5 \sin x = \sqrt{34 \cos (x - 59)^{\circ}}$$

Always use this method of setting out your working. Do NOT try to remember formulae for this. Work it out!

The Wave Function $a \cos x + b \sin x$

We have shown that:

$$3\cos x + 5\sin x = \sqrt{34\cos(x-59)^{\circ}}$$

The combined waveform is a cosine wave, of

amplitude √34

periodicity – same as original waves (2π) phase shift is 59° to the right.

This procedure allows us to:

- i) investigate maximum and minimum values and where they occur.
- ii) solve the equation $3 \cos x + 5 \sin x = \text{constant}$

Maximum and minimum values

Example:

Find the maximum and minimum values of:

$$3\cos x + 5\sin x$$

for
$$0 \le x \le 360^{\circ}$$

and state the values of x at which they occur.

This result also tells us that there is a maximum turning point at (59° , $\sqrt{34}$) and a minimum turning point at (239° , $-\sqrt{34}$).

Solution:

Express the two functions as a single function – in the form of R cos $(x \pm \alpha)$ or R sin $(x \pm \alpha)$

Since we have already done this above, we shall use the above result: and express $3 \cos x + 5 \sin x$ as $\sqrt{34 \cos (x - 59)^{\circ}}$

The cosine has a maximum value of 1 and a minimum value of -1 The maximum occurs when $\cos{(...)}=0^{\circ}$ and 360° (0 or 2π radians) The minimum occurs when $\cos{(...)}=180^{\circ}$ (π radians)

... max value of $\sqrt{34} \cos (x - 59)^{\circ}$ is $\sqrt{34}$ this occurs when x - 59 = 0 and x - 59 = 360 i.e. $x = 59^{\circ}$ or $x = 419^{\circ}$ (discard 419° as out of range)

 \therefore min value of $\sqrt{34} \cos (x - 59)^{\circ}$ is $-\sqrt{34}$ this occurs when x - 59 = 180 i.e. $x = 239^{\circ}$

Hence maximum value is $\sqrt{34}$ when $x = 59^{\circ}$ and minimum value is $-\sqrt{34}$ when $x = 239^{\circ}$

Solving Equations

Example:

Solve the equation: $3 \cos x + 5 \sin x - 2 = 0$

for $0 \le x \le 360^{\circ}$

Solution:

Express $3 \cos x + 5 \sin x$ in the form of $R \cos (x \pm \alpha)$ or $R \sin (x \pm \alpha)$

Since we have already done this above, we shall use the above result: and express $3 \cos x + 5 \sin x$ as $\sqrt{34 \cos (x - 59)^{\circ}}$

The equation we have to solve becomes:

$$\sqrt{34} \cos (x - 59) = 2$$

$$\therefore \cos(x-59) = 2/\sqrt{34}$$

$$\cos (x - 59) = 0.3430$$

:. acute
$$(x - 59) = 69.9^{\circ}$$

cosine is positive, so angle lies in 1st or 4th quadrants.

so
$$x - 59 = 69.9$$
 or $x - 59 = 360 - 69.9$

Hence $x = 128.9^{\circ}$ or 349.1°

The Wave Function $a \cos x + b \sin x$

Examples:

1. Solve for $0 \le x \le 180$ 6 cos (3x + 60) - 3 = 0

$$6\cos(3x+60)=3$$

$$\cos (3x + 60) = 0.5$$
 so, acute $(3x + 60) = 60^{\circ}$

The range for x is: $0 \le x \le 180$ so the range for 3x is: $0 \le x \le 540$

The cosine is positive, so the required quadrants are 1st, 4th and 5th (1st quadrant – second time around)

$$\therefore$$
 3x + 60 = 60 3x + 60 = 360 - 60 3x + 60 = 360 + 60

 \therefore x = 0°, 80° or 120°

2. i) Express $\sqrt{3} \cos x - \sin x$ in the form $k \sin(x - \alpha)$

ii) and hence solve the equation $\sqrt{3} \cos x - \sin x = 0$ for $0 \le x \le 360$

i) $k \sin (x - \alpha) = k \sin x \cos \alpha - k \cos x \sin \alpha$

comparing coefficients:
$$-k \sin \alpha = \sqrt{3}$$
 $k \sin \alpha = -\sqrt{3}$... (1)

$$k \cos \alpha = -1$$
 $k \cos \alpha = -1$... (2)

squaring and adding:
$$k^2 = (\sqrt{3})^2 + 1^2$$
 $k^2 = 3 + 1 = 4$ $k = 2$

dividing:
$$\tan \alpha = \sqrt{3}$$
 acute $\alpha = 60^{\circ}$

from (1) and (2)
$$\sin \alpha$$
 and $\cos \alpha$ both negative, so α lies in 3rd quadrant

$$\therefore \alpha = 180 + 60^{\circ} = 240^{\circ}$$

Hence: $\sqrt{3} \cos x - \sin x = 2 \sin (x - 240)$

ii) Using
$$2 \sin (x - 240) = 0$$
 $\sin (x - 240) = 0$ $(x - 240) = -180^{\circ}$, 0° , 180° , or 360°

$$\therefore$$
 $x = 60^{\circ}$ or $x = 240^{\circ}$

(because we are adding 240° , we need to make sure we cover all the range, so we need to consider the solution -180° as well, we do not need to go any further back, since we would be then out of the range)

3. Using R cos $(2x - \alpha)$, find the maximum and minimum values of : $4 \cos 2x + 3 \sin 2x + 5$ and the corresponding values for x in $0 \le x \le 2\pi$.

$$R \cos(2x - \alpha) = R \cos 2x \cos \alpha + R \sin 2x \sin \alpha$$

compare coefficients:
$$R \sin \alpha = 3$$

R cos
$$\alpha = 4$$

squaring and adding:
$$R^2 = 3^2 + 4^2$$
 $R^2 = 25$ $R = 5$

dividing:
$$\tan \alpha = \frac{3}{4}$$
 acute $\alpha = 0.643$ rad

 $\sin \alpha$ and $\cos \alpha$ both positive, so α is in first quadrant,

Hence:
$$4 \cos 2x + 3 \sin 2x + 5$$
 can be expressed as: $5 \cos(2x - 0.643) + 5$

Maximum value is: 10 when
$$(2x - 0.643) = 0$$
, 2π , or 4π (since we have 2x and not x)

when
$$x = 0.32$$
 rad, 3.46 rad (6.60 rad – discard – out of range)

Minimum value is: 0 when
$$(2x - 0.643) = \pi$$
 or 3π (since we have 2x and not x)

when
$$x = 1.89$$
 rad or 5.03 rad.